Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis.
نویسندگان
چکیده
Myocyte enhancer factors (MEF2s) bind to muscle-specific promoters and activate transcription. Drosophila Mef2 is essential for Drosophila heart development, however, neither MEF2C nor MEF2B are essential for the early stages of murine cardiomyogenesis. Although Mef2c-null mice were defective in the later stages of heart morphogenesis, differentiation of cardiomyocytes still occurred. Since there are four isoforms of MEF2 factors (MEF2A, MEF2B, MEF2C and MEF2D), the ability of cells to differentiate may have been confounded by genetic redundancy. To eliminate this variable, the effect of a dominant-negative MEF2 mutant (MEF2C/EnR) during cardiomyogenesis was examined in transgenic mice and P19 cells. Targeting the expression of MEF2C/EnR to cardiomyoblasts using an Nkx2-5 enhancer in the P19 system resulted in the loss of both cardiomyocyte development and the expression of GATA4, BMP4, Nkx2-5 and MEF2C. In transiently transgenic mice, MEF2C/EnR expression resulted in embryos that lacked heart structures and exhibited defective differentiation. Our results show that MEF2C, or genes containing MEF2 DNA-binding sites, is required for the efficient differentiation of cardiomyoblasts into cardiomyocytes, suggesting conservation in the role of MEF2 from Drosophila to mammals.
منابع مشابه
HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage.
Class II histone deacetylases (HDAC4, HDAC5, HDAC7 and HDAC9) have been shown to interact with myocyte enhancer factors 2 (MEF2s) and play an important role in the repression of cardiac hypertrophy. We examined the role of HDACs during the differentiation of P19 embryonic carcinoma stem cells into cardiomyocytes. Treatment of aggregated P19 cells with the HDAC inhibitor trichostatin A induced t...
متن کاملGli2 and MEF2C activate each other’s expression and function synergistically during cardiomyogenesis in vitro
The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic ...
متن کاملGenome-Wide Analysis of MEF2 Transcriptional Program Reveals Synaptic Target Genes and Neuronal Activity-Dependent Polyadenylation Site Selection
Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for...
متن کاملThe deacetylase HDAC4 controls myocyte enhancing factor-2-dependent structural gene expression in response to neural activity.
Histone deacetylase 4 (HDAC4) binds and inhibits activation of the critical muscle transcription factor myocyte enhancer factor-2 (MEF2). However, the physiological significance of the HDAC4-MEF2 complex in skeletal muscle has not been established. Here we show that in skeletal muscle, HDAC4 is a critical modulator of MEF2-dependent structural and contractile gene expression in response to neur...
متن کاملMultiple Autism-Linked Genes Mediate Synapse Elimination via Proteasomal Degradation of a Synaptic Scaffold PSD-95
The activity-dependent transcription factor myocyte enhancer factor 2 (MEF2) induces excitatory synapse elimination in mouse neurons, which requires fragile X mental retardation protein (FMRP), an RNA-binding protein implicated in human cognitive dysfunction and autism. We report here that protocadherin 10 (Pcdh10), an autism-spectrum disorders gene, is necessary for this process. MEF2 and FMRP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 119 Pt 20 شماره
صفحات -
تاریخ انتشار 2006